As Per NEP 2020

University of Mumbai

Syllabus for Basket of OE Vertical 3

Vertical 3	
Faculty of Science	
Board of Studies in Mathematics	
Second Year Programme	
Semester	III
Title of Paper	Credits
I) Quantitative Techniques - III	2
From the Academic Year	2025-26

Name of the Course: Quantitative Techniques-III

Sr.	Heading	Particulars	
No			
•	D		
1	Description the course:	The approach of the course is to develop	
	Including but not limited to:	the mathematics first and then provide the application to arithmetic and linear	
		algebra. Through this course students	
		delve into topics such sequences,	
		graphing, linear programming, solving	
		polynomials and solving system of linear	
		equations The course aims to equip	
		students with practical analytical skills	
		and mathematical tools applicable to	
		real-world scenarios in arithmatic and	
2	Vertical:	linear algebra through matrices. Open Elective	
		•	
3	Type: Credits:	Theory 2 credits	
7	Credits.	(1 credit = 15 Hours for Theory or 30	
		Hours of Practical work in a semester)	
5	Hours Allotted:	30 Hours	
6	Marks Allotted:	50 Marks	
7	Course Objectives (CO):		
	<u> </u>	ation of basic arithmetic and linear algebra.	
	scenarios.	erstanding of these concepts in real-world	
	CO1: To understand sequences and how to	oranh linear inequalities	
	-	thmic functions and its relevance in real-	
	. world problems.		
	CO3: To find roots of polynomial equati	ons	
	CO4: To use concept of row echelon for	form of a matrix to solve system of linear	
	. equations.		
8	Course Outcomes (OC):		
	After completion of the course, students will be able to		
	OC1: remember types of sequences so as to use for solving related word problems		
	and remember related theorems to solve polynomial equations. OC2: apply linear or quadratic equation so as to formulate the word problem for		
	solving and apply related theorems, concepts/methods to solve polynomial equations.		
	OC3: analyse exponential functions & logarithmic functions concept to use in real-		
	world scenarios and analyse Gauss elimination method, Gauss- Jordan elimination		
	method, matrix inversion method to solve system of linear equations		
	OC4: check the use of graphs of linear equations and inequalities in solving Linear		
	Programming problems etc and check how to use the concept of system of linear equations to real-world scenarios like traffic flow, electrical networks, curve fitting etc		
	so as to solve them.	te now, electrical networks, carve riting etc	
9	Modules: -		
	Module 1: Arithmetic		
		nd Geometric sequences, its applications.	
	 Linear equations in one variable and 		
		· · · · · /	

- Quadratic equations and its applications (word problems).
- Graphing linear equations and straight line depreciation using slope-point form, Graphs of inequalities and its applications to Linear Programming.
- Applications of exponential functions to Radioactive decay, Oceanography, Malthusian Population Growth, Epidemiology, The Malthusian theory etc.
- Applications of Logarithmic functions to electrical engineering, Geology, charging batteries, population doubling time, isothermal expansion, pH scale, Electronics, Physiology, carbon-14 dating, population growth, etc.

Module 2: Polynomial equations and Matrices

• Solving polynomial equations:

zero of a polynomial, Remainder theorem, Factor theorem, synthetic division, fundamental theorem of Algebra, conjugate pairs theorem, Descartes rule of signs, intermediate value theorem (location of roots) for polynomials with real coefficients (proofs of theorems mentioned are not expected).

Matrices:

Matrix and its determinant, types of matrices, algebra of matrices, elementary row operations, Row echelon form and reduced row echelon form of a matrix, rank of a matrix, system of homogeneous and non-homogeneous linear equations, Its matrix representation, Augmented matrix, solving system of linear equations by Gaus elimination method & Gauss- Jordan elimination method, inverse of a matrix, matrix inversion method to find inverse of a matrix (if exists). Applications of system of linear equations to

- 1) Electrical networks,
- 2) Traffic flow,
- 3) Curve fitting,
- 4) Leontief input-output model in economics etc

10 Text Books

- 1. College Algebra, 7th edition, R. David Gustafson and Peter D. Frisk,
- . Brooks/Cole., 2000.
- **2.** Linear Algebra with applications, 9th edition, Gareth Williams, Jones and Bartlett Learning, 2019.

11 Reference Books

- 1. Algebra for college students, 6th edition, Jerome E. Kaufmann and Karen
- . Schwitters, Brooks/Cole, 1999.
- 2. Linear Algebra and its applications, 3rd edition, David C. Lay, Pearson, 2020

Scheme of the Examination

The performance of the learners shall be evaluated into two parts.

- Internal Continuous Assessment of 20 marks for each paper.
- Semester End Examination of 30 marks for each paper.
- Separate head of passing is required for internal and semester end examination.

12	Internal Continuous Assessment: 40%	External, Semester End
		Examination 60% Individual
		Passing in Internal and External
		Examination

13 Continuous Evaluation through: Quizzes,

Class Tests, presentations, projects, role play, creative writing, assignments etc.

(at least 3)

Sr.	Particulars	Marks
No.		
1	A class test of 10 marks is to	10
	be conducted during each	
	semester in an Offline mode.	
2	Project on any one topic	05
	related to the syllabus or a	
	quiz (offline/online) on one	
	of the modules.	
3	Seminar/ group presentation	05
	on any one topic related to	
	the syllabus.	

Paper pattern of the Test (Offline Mode with One hour duration):

Q1: Definitions/Fill in the blanks/ True or False with Justification.

(04 Marks: 4 x 1).

Q2: Attempt any 2 from 3

descriptive questions. (06 marks: 2×3)

14 Format of Question Paper:

The semester-end examination will be of 30 marks of one hour duration covering the entire syllabus of the semester.

	Note: Attempt any TWO questions out of THREE.		
Q.No.1	Module	Attempt any THREE out of FOUR .	15 Marks
	1 and 2	(Each question of 5 marks)	
		(a) Question based on OC1	
		(b) Question based on OC2	
		(c) Question based on OC3	
		(d) Question based on OC4	
Q.No.2	Module	Attempt any THREE out of FOUR .	15 Marks
	1 and 2	(Each question of 5 marks)	
		(a) Question based on OC1	
		(b) Question based on OC2	
		(c) Question based on OC3	
		(d) Question based on OC4	

Q.No.3	Module	Attempt any THREE out of FOUR .	15 Marks
	1 and 2	(Each question of 5 marks)	
1		(a) Question based on OC1	
		(b) Question based on OC2	
1		(c) Question based on OC3	
1		(d) Question based on OC4	

Sd/-Sign of the BOS Chairman Prof. B.S. Desale BOS in Mathematics Sd/-Sign of the Offg. Associate Dean Dr. Madhav R. Rajwade Faculty of Science & Technology Sd/-Sign of the Offg. Dean Prof. Shivram S. Garje Faculty of Science & Technology