Date: 25.11.2019 Duration:[3 Hours] [Total Marks: 100]

- N.B. 1) All questions are compulsory.
 - 2) Figures to the right indicate full marks.
- 1. Choose correct alternative in each of the following:
 - i. If $n = 7^3 \cdot 5^4 \cdot 3^5, m = 105 \cdot 10^5$ then q.c.d.(m, n) is
 - (a) 2625 (b) 2645 (c) 1 (d) None of these
 - ii. If g.c.d.(a,b) = l.c.m.(a,b) then the following is true
 - (a) a > b (b) a = b (c) a + b = 1 (d) None of these
 - iii. If a|b and a|c then
 - (a) a|bx + cy (b) a = 1 (c) a|1 (d) None of these
 - iv. An integer greater than 1 that is not a prime is termed
 - (a) even number (b) odd number (c) composite number (d) None of these
 - v. Let A and B be two non empty sets. Function from A to B is
 - (a) relation which assigns at least one element of A to a unique element of B.
 - (b) relation which assigns every element of A to a unique element of B.
 - (c) relation which assigns each element of A to a more than one element of B
 - (d) none of these.
 - vi. $A=\{1,2,3\}, B=\{a,b,c,d\}$ then which of the following relation is a function from A to B
 - (a) $R = \{(1, a), (1, b), (2, c), (3, d), (3, a)\}$
 - (b) $R = \{(1, a), (2, c)\}$
 - (c) $R = \{(1, a), (2, b), (3, c), (3, d)\}$
 - (d) $R = \{(1, a), (2, a), (3, a)\}$
 - vii. If * is a binary operation on \mathbb{N} then * can be
 - (a) addition
 - (b) subtraction
 - (c) division.
 - (d) none of these
 - viii. Consider the binary operation * on $\mathbb Z$ as follows

For $a, b \in \mathbb{Z}, a * b = a + b - 7$.

The identity of $\mathbb Z$ under the binary operation * is

- (a) 0 (b) 1 (c) 7 (d) -7
- ix. Which is the root of the polynomial $6x^3 49x^2 + 51x 14$
 - (a) $\frac{-1}{2}$ (b) $\frac{2}{3}$ (c) $\frac{-2}{3}$ (d) -7
- x. Degree of constant polynomial is
 - (a) 1 (b) 0 (c) 2 (d) Not defined

2. (a) Attempt any **ONE** question from the following:

(8)

- i. State and prove the First Principle of Finite Induction
- ii. Prove that for given integers a and b(b > 0) there exists unique integers q and r such that $a = bq + r, 0 \le r \le b$
- (b) Attempt any **TWO** questions from the following:

(12)

- i. Prove the following using second principle of induction $x_1 = 1, x_2 = 7, x_{n+1} = 7x_n 12x_{n-1}, \forall n \geq 2$, then $x_n = 4^n 3^n$
- ii. For any natural number n prove that the following pairs are relatively prime.
 - (p) 2n + 1 and 9n + 4 , (q) 5n + 2.7n + 3
- iii. Prove that $7|2222^{5555} + 5555^{2222}$
- iv. If $a \equiv b \pmod{n}$, $c \equiv d \pmod{n}$ then prove that
 - (p) $(a+c) \equiv (b+d) \pmod{n}$
 - (q) $(a-c) \equiv (b-d) \pmod{n}$
 - (r) $ac \equiv bd \pmod{n}$
- 3. (a) Attempt any **ONE** question from the following:

(8)

- i. If $f: X \to Y$, $A \subseteq X$, $B \subseteq Y$ then prove that $(p)A \subseteq f^{-1}(f(A))$ and $(q)A = f^{-1}(f(A))$ if and only if f is invective
- ii. If \sim is an equivalence relation on a non empty set X then prove that
 - (p)each element of X belongs to some equivalence class of X
 - (q)any two equivalence class of X are either disjoint or identical.
 - (r)union of these equivalence classes is X
- (b) Attempt any **TWO** questions from the following:

- (12)
- i. Prove that the function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x + 3 is bijective. Also find its inverse function.
- ii. Give an example of
 - (p) injective function which is not surjective
 - (q) surjective function which is not injective
 - (r) neither injective nor surjective.
- iii. Show that the relation R defined by for $x,y\in\mathbb{Z}$, xRy iff 2x+3y is divisible by 5 is an equivalence relation on $X=\mathbb{Z}$
- iv. Determine whether the relation $R = \{(1,1), (2,2), (3,3), (4,4), (1,2)(2,1)(1,3), (3,1), (2,3), (3,2)\}$ on set $X = \{1,2,3,4\}$ is Reflexive, Symmetric and Transitive and hence an equivalence relation. If R is equivalence relation then find all its equivalence classes.
- 4. (a) Attempt any **ONE** question from the following:

- (8)
- i. If f(x), $g(x) \in F[x]$ are non zero polynomials $f(x) = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$ and $g(x) = b_0 + b_1x + b_2x^2 + \ldots + b_nx^n$ then prove that
 - (p) $\deg(f(x) + g(x)) \le \max\{\deg f(x), \deg g(x)\}$
 - (q) $\deg(f(x) \cdot g(x)) = \deg f(x) + \deg g(x)$

Class / Semester / Subject Code : F.Y.B.Sc./ I / USMT102 - Algebra-I

- ii. If p is a positive prime number then prove that \sqrt{p} is irrational.
- (b) Attempt any **TWO** questions from the following:

(12)

- i. Find G.C.D. of f(x) and g(x) in R[x]: $f(x) = 2x^3 - 13x^2 + 17x - 3$ and $g(x) = 2x^3 + 5x^2 - 14x + 3$
- ii. Find the quotient and remainder when $f(x) = x^4 3x^2 + 4x + 8$ is divided by $g(x) = x^2 + 2$
- iv. Find all the roots of $f(x) = x^3 3x^2 4x + 12$ if sum of its two root is zero
- 5. Attempt any **FOUR** questions from the following:

(20)

- (a) Prove that 1 is the least element of \mathbb{N}
- (b) State Euler's theorem, Fermat's theorem and Wilson's theorem,
- (c) Check whether the following binary operation is commutative and associative. Find an identity element and inverse element if they exist. $a*b = \frac{ab}{6}$, for $a, b \in \mathbb{Q} \{0\}$
- (d) Suppose $f: X \to Y$ and $g: Y \to Z$ are two functions. Show that for any non empty subset A of X, $g \circ f(A) = g(f(A))$
- (e) Define monic polynomial and show that if f(x) is monic polynomial then all rational root of f(x) are integer roots.
- (f) Find all fourth roots of unity.

Q.P.Code: 19076 Page 3 of 3 SRM-R-SH2019