Class / Semester / Subject Code: S.Y.B.Sc. (Computer Science) / III/USCS305-Combinatorics and Graph Theory

Date: 09.10.2019		2019 Time : $(2\frac{1}{2})$	Time : (2 ¹ / ₂ Hours)		Total Marks: 75	
N.B.	(1) (2)	All questions are compulsory. Figures to the right indicate marks for	r respe	ective sub question	ons.	
Q.1) (a)	(i)	Attempt All (Each of 5Marks) Choose correct alternative in each of A graph with no parallel edges and no (a) simple	the for b loop (b) (d)	llowing. s is called agra multiple	iph.	(15) (5)
	(ii)	 (c) product of two consecutive natur by (a) 3 (c) 6 	al nun (b) (d)	nbers is always d	ivisible	
	(iii)	The Chromatic number of a complete (a) n! (b) n+1	grapł (c) (d)	n on n vertices is n n-1		
	(iv)	A vertex with degree zero is called as(a) Pendent(b) isolated	(c) (d)	incident None of the abo	ove	
	(v)	Pascal triangle is used to find the coef (a) Multinomial (b) Exponential	fficien (c) (d)	t of expansion Binomial All of the abov	on. e.	
(b)	(i) (ii)	Fill in the blanks (1,pseudo,degree,combination,zero) is the selection of r objects from n A graph with parallel edges and loop	objec is call	ts. ed as		(5)
	(iii) (iv) (v)	Sink 'T' in network has out degree The number of edges incident on a ve $n_{\alpha} = \dots$	ertex is	s called asof a	vertex.	
(c)	(i) (ii) (iii) (iv) (v)	Answer the following in one line Clique Tree Augmenting path Binomial theorem Planar graph				(5)
Q.2)	(a) (b)	Attempt any THREE of the followin Determine the coefficient of $x^2y^2z^2$ By using mathematical induction show $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$	g. in the w that +1)	expansion of (<i>x</i> for all positive i	$(+ y + z)^6$ ntegers	(15)
	(c)	How combinatorics and graph theory example.	relate	d to each other?	Give an	
	(d) (e)	A farmer buys 5 cows, 2 goats and 4 nens from a man who has 4 cows, 3 goats and 8 hens. How many choices dose the farmer have? If $a_0 = 1, a_1 = 1, a_2 = 1, a_n = a_{n-1} + a_{n-2} + a_{n-2}$, $\forall n \ge 3$. By				
	. /		- '		-	

Class / Semester / Subject Code: S.Y.B.Sc. (Computer Science) / III/USCS305-Combinatorics and Graph Theory

- (f) How many string of three decimal digits with repetition allowed?
 - (A) That begins with an odd number.
 - (B) Have exactly two digit that are 4's.

Q.3) Attempt **any THREE** of the following.

(15)

(a) Check whether the following two graphs are isomorphic or not.

7

4

4

- (b) Draw a tree whose prufer(T)=6643143.
- (c) What is planar graph? Prove that $K_4 \& K_{2,2}$ are planar.
- (d) State and prove Euler's formula.
- (e) Determine the number of regions defined by a connected planar graph with 6 vertices and 10 edges. Draw a simple and a non-simple planar graph.
- (f) Define Eulerian and Hamiltonian graphs. Give an example of a graph which is Hamiltonian but not Eulerian.

Q.4) Attempt **any THREE** of the following.

Ω

(a)

(15)

(b) What is integer solution of a linear programming problem?

2

10

- (c) Explain matching in bipartite graph.
- (d) Suppose we are coloring the vertices of the square using black and white. Draw all the possible pattern of coloring also find the different transformations for fixed coloring.
- (e) Find flow of the following network and find any two cuts in the network also find there capacities.

Class / Semester / Subject Code: S.Y.B.Sc. (Computer Science) / III/USCS305-Combinatorics and Graph Theory

(f) Write permutations shown below in cycle notation of π_1 and π^2 also compute $\pi 1\pi^2$ (product of two permutations) $\pi_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \pi_2 & \pi_1 & \pi_2 & \pi_2 & \pi_1 & \pi_2 & \pi_1 & \pi_2 & \pi_2 & \pi_2 & \pi_1 & \pi_2 & \pi_2 & \pi_2 & \pi_2 & \pi_1 & \pi_2 & \pi_2 & \pi_2 & \pi_1 & \pi_2 & \pi_2 & \pi_2 & \pi_1 & \pi_2 & \pi_2 & \pi_2 & \pi_2 & \pi_2 & \pi_2 & \pi_1 & \pi_2 & \pi_2 & \pi_2 & \pi_2 & \pi_1 & \pi_2 & \pi_2$

$$u_1 = (425621), u_2 = (561342)$$

Attempt any THREE of the following.

(15)

- (a) What is graph colouring? What is chromatic number of a graph? Explain with a suitable example.
- (b) Using mathematical induction prove that, $2^n > n^2$ for $n \ge 5$ $n \in N$
- (c) Find the maximum flow of the following network by using Ford-Fulkerson's algorithm.

(d) Determine Prufer code for the following tree.

(e) Prove that in any finite undirected graph the number of vertices of odd degree is always even.

Q.5)