Time: 3 Hours

Total Marks: 100

Date: 07.10.2019

			Please check whether you have got the right qu	uestion paper.				
	N.B	s.: 1. All	Questions are compulsory.					
		2. Figu	ares to the right indicate full marks.					
		3. Use	of log-table/nonprogrammable calculator is allowed.					
		4. Ans	wers for the same question as far as possible should be	oe written together.				
1	(A)							
1.	(A)	Select th	e correct option and complete the following sentence Nitration of phenol is a example of reaction		12			
			(a) Reversible (b) Consecutive (c)) Parallel				
		(ii)	Increase in reaction rate with temperature is due to					
			(a) decrease in activation energy(b) increase in(c) increasing in number of molecules having energy	n total number of collisions				
		(iii)	Which of the following will form an ideal solution:					
		(111)		c) C ₆ H ₆ and C ₆ H ₅ CH ₃				
		(iv)	The correct form of Arrhenius equation is	F. (D. 170)				
				$k=A e^{-Ea/RT2}$				
		(v)	For the study of Nernst distribution law two liquids					
		(vi)	(a) miscible (b) immiscible The temperature at which two conjugate solutions for	(c) volatile				
		(11)	called as	orms nomogeneous phase is				
				cal temperature				
			(c) Daltons temperature	•				
(vii) is the electron deficient compound.								
	(a) B_2H_6 (b) $SiCl_4$ (c) SiO_2							
	(viii) The tendency of BF ₃ , BCl ₃ & BBr ₃ to behave as lewis acid decreases in the							
	sequence (a) $BF_3 > BCl_3 > BBr_3$ (b) $BCl_3 > BF_3 > BBr_3$							
(a) $BF_3 > BCI_3 > BBI_3$ (b) $BC_3 > BCI_3 > BF_3$								
		(ix)	cture of diborane is					
			concerned					
			(a) 'There are two bridging hydrogen atoms in (
			(b) 'The hydrogen atoms are not in the same pla	ane in diborane.				
		(x)	(c) 'All B-H bonds in diborane are similar.' Non - Combustible hydride is					
		(A)	(a) NH ₃ (b) PH ₃	(c) AsH ₃				
		(xi)	is not hydrolysed.					
		2	(a) $AsCl_3$ (b) PF_3	(c) NF ₃				
		(xii)	The least stable hydride of 15 th group elements is _					
		(-:::)	(a) NH ₃ (b) PH ₃	(c) BiH ₃				
		(xiii)	The product of Friedel – Craft's acylation of arenes (a) Alkylarene (b) aldehyde	(c) ketone				
		(xiv)	Aldehydes reacts with a secondary amine to give	` /				
		(111)	(a) enamine (b) imine	 (c) iminium salt				
		(xv)	The product of Gatterman – Koch formylation is					
			(a) aliphatic aldehyde (b) aromatic aldehyde	(c) aromatic ketone				

	(xvi) The decreasing order of reactivity of acetone, acetaldehyde and formaldel							
towards nucleophilic addition reaction is								
		(a) acetone > acetaldehyde > form	•					
(b) acetaldehyde > formaldehyde > acetone								
	(c) formaldehyde > acetaldehyde > acetone							
	(xvii)	is not an active	-	ompound.				
		(a) Ethyl acetate (b) Ethyl acetoacetate (c) Acetyl acetone						
	(xviii) can exibit keto – enol tautomerism.							
		(a) Acetaldehyde (b) Benza	aldehyde	(c) Formaldehyde				
					3			
(B)	State whether the following statements are true or false. (any three)							
	(i)	Carbon atom of carbonyl group is SP ² hybridised.						
	(ii) Reaction of Grignard regent with ketone gives tertiary alcohol.							
	(iii)	B ₂ H ₆ is a hydride of boron.						
	(iv)	Borax is basic in nature.		A				
	(v) Chlorination of Toluene is an example of parellel reaction							
	(vi)	Phenol water system is an example	of lower co	nsolute temperature				
<i>(</i> ~)			14		_			
(C)		he column. (any five)	.'O',		5			
	(i)	Consecutive reaction	(a)	Group 14 element				
	(ii)	Raults law	(b)	Oxidation				
	(iii)	Arsenic	(c)	Group 15 element				
	(iv)	Boron	(d)	$A \rightarrow B \rightarrow C$				
	(v)	Pyridiniun Chlorochromate (PCC	, , ,	Dehydrogenation				
	(vi)	Lithium Aluminium Hydride	(f)	Group 13 element				
			(g)	$P^0 - P/P^0 = X_2$				
			(h)	Reduction P^0 - $P/P = X_1$				
A ttor	nat any f	our of the fellowing	(i)	$P^* - P/P = X_1$	20			
		our of the following.	vyoroiblo roo	otions ii) porallal reactions	20			
(A)								
(B)	Derive Arrhenius equation to explain the effect of temperature on equilibrium constant							
(C) What is energy of activation? the energy of activation of gaseous reaction is 50208 Jmc calculate the rate constant at 323 k if it is 4.0 x 10 ⁻³ s ⁻¹ at 303 k (R= 8.314 JK ⁻¹ mol ⁻¹)								
(D)	003 K (K= 0.314 JK IIIOI)							
(E)		an ideal solution? state and explain the variation of mutual solubility with		re for Phenol -Water system				
			-	-				
(F) Define Nernst distribution law and state the condition under which law is strictly val								
Atter	nnt any f a	our of the following			20			
(A)	Attempt any four of the following. (A) Draw the structure of BF ₃ . Why does it called Lewis acid? Write its any three							
(11)			a Le wis acia	. Write its any times				
(B)	applications. What is borax? Explain any two methods used for its synthesis.							
(C)	Write a note on purification of germanium by any one method.							
(D)	· · · · · · · · · · · · · · · · · · ·							
position in the periodic table? Name any two compounds of silicon.								
(E)	-	idation state of nitrogen in each						
(-)	of them.		o · · - · · · · · · · · · · · · · · ·					
(F)	With a suitable diagram, explain the synthesis of ammonia by Bosch – Haber process.							

2.

3.

Attempt any **four** of the following. What is Knoevenagel reaction? Explain it's mechanism and give one example of it. 5 (A) 3 i) Give general mechanism of nucleophilic addition to carbonyl compound. (B) 2 ii) What is Rosenmund reduction? Give one example of it. 3 (C) i) Define enolisation. Give the mechanism of acid catalysed enolisation. 2 ii) What is crossed Cannizzaro's reaction? Give an example of it. i) How will you convert ethyl acetoacetate to succinic acid? 3 (D) 2 ii) What are stabilised enols? Give one example of it. 5 Give chemical reactions for the following conversions. (E) i)benzaldehyde to 1-Phenylethanol ii) Benzene to acetophenone iii) propyne to acetone. iv) acetone to acetone sodium-bisulphite. v) Benzaldehyde to Bezaldehyde cyanohydrin Explain the structure and reactivity of carbonyl group. 5 (F) Attempt any **four** of the following. Complete the following reaction, name it and write its mechanism 5 $2 C_6 H_5 - CHO + KCN \frac{\Delta}{C_2 H_5 OH_1 H_2 O}$ 5 (B) How will you convert: 1) Acetyl acetone to 2- Butanone 2) Ethyl formate to acetaldehyde (C) Draw the structure of tetraborane. Explain various bonds involved in the structure. 5 Calculate total number of electrons involved in the bonding. What is silica? Explain its structure and bonding. Why is it inert? 5 (D) What are the different steps involved in H₂ and Br₂ chain reaction? 5 (E) 5 (F) A solution of two liquids show ideal behaviour. The mole fraction of A is 0.4 The vapour pressure of pure A is 0.5 atm. and that of B is 0.3 atm.calculate partial vapour pressure of A and B in solution